Journal of Organometallic Chemistry, 248 (1983) 61-72 Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

DARSTELLUNG UND STRUKTUREN VON CYCLISCHEN OCTA-t-BUTYL-TETRASTANNA-CHALKOGEN-VERBINDUNGEN

HEINRICH PUFF*, ANNE BONGARTZ, WILLI SCHUH und RENÉ ZIMMER

Anorganisch-Chemisches Institut der Universität Bonn, Gerhard-Domagk-Strasse 1, D-5300 Bonn 1 (B.R.D.)

(Eingegangen den 20. Dezember 1982)

Summary

New cyclic compounds t-Bu₈Sn₄Y (Y = S, Se, Te) have been synthesized by reaction of $I(t-Bu_2Sn)_4I$ with the corresponding hydrogen chalcogenides. The tin-chalcogen five-membered rings are almost planar and the tin-tin bonds are noticeably longer than in the organotin compounds studied until now.

Zusammenfassung

Durch Umsetzung von $I(t-Bu_2Sn)_4I$ mit den entsprechenden Chalkogenwasserstoffen wurden neuartige cyclische Verbindungen t-Bu₈Sn₄Y (Y = S, Se, Te) dargestellt. Die Zinn-Zinn-Abstände in den fast ebenen Zinn-Chalkogen-Fünfringen sind merklich grösser als bei den bisher untersuchten zinnorganischen Verbindungen.

Einleitung

Im Rahmen unserer Untersuchungen an Diorganozinnchalkogeniden konnten wir bei der Reaktion von tetramerem Di-t-butylzinn [1] mit elementarem Chalkogen die cyclischen Verbindungen I und II isolieren [2].

Bei der gleichen Reaktion beobachteten wir die Bildung eines neuen Zinn-Chalkogen-Ringes der Zusammensetzung t-Bu₈Sn₄Y^{*}, der als erstes Oxidationsprodukt des Zinn-Zinn-Vierrings aufgefasst werden kann (Gl. 1).

^{*} Die Existenz einer Verbindung Me₈Sn₄Te wurde bereits früher aufgrund eines NMR-Spektrums vermutet [3].

(Y = S, Se, Te)

(II)

Bei den bisher bekannten Zinn-Chalkogen-Ringen ist das Verhältnis Chalkogen/Zinn grösser:

	Y/Sn	formale Oxida- tionszahl Sn	
$\overline{(\mathbf{R}_2\mathbf{Sn})_n}$	0	+2	R = Ph, n = 6 [4]
			R = t-Bu, n = 4[1]
			R = Tmsm *, n = 4[5]
$(R_2Sn)_4Y$	1/4	+ 2.5	$\mathbf{R} = \mathbf{t} - \mathbf{B}\mathbf{u}$
$(R_2Sn)_4Y_2$	1/2	+ 3	$\mathbf{R} = \mathbf{Me}\left[3\right]$
$(\mathbf{R}_{2}\mathbf{Sn})_{3}\mathbf{Y}_{2}$	1/1.5	+ 3.33	R = Me[6]
			R = t - Bu[7], [8]
$(R_2 SnY)_n$	1/1	+4	R = Me, n = 3 [9]
			$\mathbf{R} = \mathbf{i} - \mathbf{Pr}, n = \infty$ [10]
			R = t-Bu, n = 2 [2].

Darstellung

Die Reaktion 1 brachte nur kleine Ausbeuten der neuen Substanzen, die Reaktionsprodukte enthielten oft noch die Verbindungen I und II. Etwas bessere Ergebnisse lieferte im Falle der selen- bzw. tellur-haltigen Ringe die Umsetzung von Di-t-butylzinn mit den Diphenyldichalkogeniden, die in der Hitze Chalkogen abspalten [8].

^{*} Trimethylsilyl-methylen (CH₃)₃SiCH₂.

Die Ausbeuten bei diesen Oxidationsreaktionen werden vor allem dadurch verringert, dass noch weitere Zinn-Zinn-Bindungen gespalten werden. Vermeidet man oxidative Bedingungen und substituiert die Halogenatome in Diiodo-octa-t-butyl-te-trastannan $I(t-Bu_2Sn)_4I$ [1] durch Umsetzung mit Chalkogenwasserstoffen * in Gegenwart von Triethylamin, so lassen sich die neuen Fünfringe analysenrein und in guter Ausbeute darstellen (Gl.2).

$$t-Bu_8Sn_4I_2 + H_2Y \xrightarrow{Et_3N} t-Bu_8Sn_4Y + 2 HI$$
(2)

Eigenschaften

Die Verbindungen kristallisieren in langen dünnen Nadeln. Die Kristalle sind farblos; lediglich grosse Kristalle der Tellurverbindung zeigen eine schwache Gelbfärbung. Die Löslichkeit in unpolaren oder schwach polaren organischen Lösungsmitteln ist gut.

Erstaunlich ist die Stabilität der Tellurverbindung; die Kristalle können längere Zeit ohne Zersetzung an der Luft aufbewahrt werden. Dagegen zersetzen sich die stärker gelb gefärbten tellurreicheren Ringe des Typs I in wenigen Stunden und die des Typs II in einigen Tagen unter Abscheidung von elementarem Tellur. Die Verbindungen wurden durch Elementaranalysen sowie durch Schwingungs-, Massen- und NMR-Spektren (¹H, ¹³C und ¹¹⁹Sn) eindeutig charakterisiert.

Strukturbestimmung

Von der Schwefel- [11] und der Tellurverbindung [12] wurden vollständige Röntgenstrukturanalysen durchgeführt. Da die Schwefel- und die Selenverbindung [12] isotyp sind, werden für die letztere hier nur die anhand eines kleineren Datensatzes ermittelten Schweratomlagen angegeben.

Alle Messungen wurden auf einem Vierkreisdiffraktometer CAD4 (Enraf-Nonius) durchgeführt. Benutzt wurde Mo- K_{α} -Strahlung mit Graphitmonochromator. Die Tellurverbindung wurde bei 188 K gemessen, die anderen Kristalle bei Zimmertemperatur. Da während der Messung ein Intensitätsabfall auftrat, wurden die Messwerte anhand von Kontrollreflexen korrigiert.

Für die Schwefelverbindung sind nach den Auslöschungsbedingungen (h0l nur vorhanden für h = 2n und 0kl nur vorhanden für l = 2n) die Raumgruppen $Pca2_1$ (Nr. 29) und Pcam (Nr. 57 in anderer Aufstellung) möglich, jedoch liess sich die Struktur nur in der erstgenannten verfeinern. Für die Tellurverbindung (0k0 nur für k = 2n vorhanden und h0l nur für l = 2n vorhanden) ergab sich die Raumgruppe $P2_1/c$ (Nr. 14).

Die Lagen der Ringatome wurden aus Patterson-Synthesen ermittelt, die der Kohlenstoffatome aus anschliessenden Fourier-Synthesen. Die Verfeinerungen wurden mit geblockter Matrix und einer Gewichtung des Strukturfaktors mit $1/\sigma^2$ durchgeführt. Die Wasserstoffatome wurden nicht lokalisiert.

Die Strukturberechnungen erfolgten mit den Programmsystemen XRAY67 und XRAY76 [13]. Die Molekülzeichnungen wurden mit den Programmen ORTEP [14]

^{*} Natriumchalkogenide sind ungeeignet, da sie ebenfalls Zinn-Zinn-Bindungen spalten.

	t-Bu ₈ Sn ₄ S	t-Bu ₈ Sn ₄ Se	t-Bu ₈ Sn ₄ Te	
Kristallabmessungen	0.05 × 0.07 × 0.15	0 10 × 0 12 × 0 30	0.08 × 0.10	× 0 20
Kristallsystem	orthorhombisch	orthorhombisch	monoklin	~ 0.20
Raumgruppe	P_{ca2} , (Nr. 29)	P_{ca2} (Nr. 29)	P_{2_1}/c (Nr. 14	a
Messtemperatur (K)	293	293	293	188
Elementarzelle			_, _	
a (pm)	2549.1(6)	2561.6(3)	953.1(4)	946.5(4)
<i>b</i> (pm)	951.9(3)	951.5(3)	1940.7(3)	1930.5(2)
<i>c</i> (pm)	3457.2(9)	3445.3(6)	2464.0(3)	2456.0(2)
β (°)		.,	110.30(3)	110.53(2)
$V(nm^3)$	8.389	8.398	4.275	4.203
Formeleinheiten Z	8	8	4	
Molmasse	964	1011	1059	
d_{ro} (g cm ⁻³)	1.53	1.60	1.65	
F ₀₀₀	3840	3984	2064	
Absorption μ (cm ⁻¹)	24.3	33.1	30.3	
Bereiche	$0 < \theta < 20$	$0 < \theta < 16$	$0 < \theta < 20$	
gemessene Reflexe	4697	2061	4672	
davon verwendet	2164	1744	3646	
mit $\sigma(I)/I <$	0.7	1.0	0.8	
verfeinerte Parameter	347	41 +	173	
R-Wert	0.053	0.145 +	0.045	

KRISTALLOGRAPHISCHE DATEN (⁺ nur Schweratome)

und SCHAKAL [15] angefertigt. Die übrigen Berechnungen, insbesondere die Konformationsanalysen, erfolgten mit dem Programm KPLOT [16].

Alle Rechnungen wurden auf der Rechenanlage IBM-370/168 des Regionalen Hochschulrechenzentrums der Universität Bonn durchgeführt.

Ringkonformation

Die Ringe der neuen Verbindungen sind nicht eben. Bei der Tellurverbindung liegt der Fünfring in twist-Form vor. Dabei geht eine zweizählige Symmetrieachse durch das Chalkogenatom und den Schwerpunkt der gegenüberliegenden Zinn-Zinn-Bindung (Fig. 1).

Etwas anders liegen die Verhältnisse bei der Schwefel- und der Selenverbindung; hier sind im Festkörper * deutlich zwei verschiedene Konformationen zu erkennen (Fig. 2). Bei der einen (A) kann man durch das Chalkogenatom, die beiden benachbarten Zinnatome (Sn(1) und Sn(4)) sowie den Schwerpunkt der Bindung Sn(2)-Sn(3) mit üblichen Ausgleichsverfahren eine idealisierte Ebene ("Ausgleichsebene") legen; die beiden verbleibenden Zinnatome sitzen dann darüber und darunter. Bei der anderen Konformation (B) wird die Ausgleichsebene durch das Chalkogenatom

TABELLE 1

^{*} Aus NMR-Spektren ist zu erkennen, dass in Lösung ein schneller Konformationswechsel erfolgt. Die Zinnatome Sn(1) und Sn(4) sind äquivalent, ebenso die Atome Sn(2) und Sn(3).

TABELLE 2

ATOMKOORDINATEN UND TEMPERATURFAKTOREN MIT STANDARDABWEICHUNGEN t-Bu $_8$ Sn $_4$ S, MOLEKÜL A

Atom	`x	y .	Z	U
Sn(1)	-0.08942(13)	0.55064(45)	0.0	s. Tab. 6
Sn(2)	0.00023(11)	0.60874(34)	0.04831(14)	
Sn(3)	0.08335(10)	0.58410(33)	-0.00787(15)	
Sn(4)	0.02706(11)	0.63373(38)	-0.07941(15)	
S	-0.06451(48)	0.5805(23)	-0.06675(39)	
C(10)	-0.1586(15)	0.6902(42)	0.0056(11)	0.029(11)
C(11)	-0.1465(27)	0.8439(74)	0.0021(21)	0.112(24)
C(12)	-0.1907(24)	0.6781(68)	-0.0305(18)	0.090(22)
C(13)	-0.1896(22)	0.6607(63)	0.0418(16)	0.080(19)
C(15)	-0.1200(19)	0.3348(51)	0.0015(14)	0.054(14)
C(16)	-0.0670(28)	0.2368(69)	0.0002(22)	0.110(24)
C(17)	-0.1392(23)	0.2830(64)	0.0334(17)	0.081(19)
C(18)	-0.1607(22)	0.3104(60)	-0.0326(16)	0.072(18)
C(20)	0.0016(23)	0.8222(56)	0.0735(15)	0.075(16)
C(21)	0.0477(19)	0.8622(59)	0.0952(14)	0.075(16)
C(22)	-0.0042(20)	0.9219(55)	0.0355(13)	0.073(15)
C(23)	-0.0571(18)	0.8428(53)	0.0950(13)	0.062(14)
C(25)	0.069(26)	0.4638(74)	0.0933(16)	0.126(47)
C(26)	-0.0040(20)	0.3108(58)	0.0840(13)	0.083(19)
C(27)	-0.0578(18)	0.5045(51)	0.1180(15)	0.083(27)
C(28)	0.0618(17)	0.5008(45)	0.1234(13)	0.063(46)
C(30)	0.1537(16)	0.7197(42)	-0.0087(14)	0.050(11)
C(31)	0.1355(24)	0.8821(67)	0.0023(18)	0.109(22)
C(32)	0.1850(16)	0.7078(47)	-0.0389(12)	0.047(13)
C(33)	0.1875(21)	0.6895(60)	0.0312(15)	0.079(18)
C(35)	0.1119(18)	0.3812(48)	-0.0010(13)	0.055(13)
C(36)	0.1566(26)	0.3336(71)	-0.0288(18)	0.110(23)
C(37)	0.1446(21)	0.3393(61)	0.0330(16)	0.063(14)
C(38)	0.0635(18)	0.2690(47)	-0.0086(16)	0.063(14)
C(40)	0.0233(18)	0.8453(52)	-0.1004(13)	0.050(14)
C(41)	0.0781(24)	0.9002(72)	-0.1124(18)	0.098(22)
C(42)	0.0085(26)	0.9330(74)	-0.0631(19)	0.108(23)
C(43)	-0.0136(19)	0.8613(58)	-0.1344(14)	0.065(15)
C(45)	0.0382(22)	0.4931(56)	-0.1308(15)	0.063(16)
C(46)	0.0259(21)	0.3428(60)	-0.1171(15)	0.068(16)
C(47)	0.0993(22)	0.5149(57)	-0.1379(16)	0.071(18)
C(48)	0.0022(24)	0.5273(58)	-0.1606(15)	0.073(16)

sowie die Zinnatome Sn(1), Sn(2) und Sn(4) bestimmt; dann weicht nur Sn(3) davon ab.

In Tabelle 7 sind die Abstände der Ringatome von den Ausgleichsebenen angegeben.

Die Berechnung der Ringtorsionswinkel zeigt deutlich die Unterschiede der beiden Konformationen (Fig. 3). Bei der Form A sind die Torsionswinkel sym-

Atom	x	y	Z	U
Sn(1)	0.21870(11)	-0.12752(35)	0.31476(15)	s. Tab. 6
Sn(2)	0.16097(11)	-0.06812(43)	0.24559(13)	
Sn(3)	0.24235(12)	-0.09578(36)	0.18805(14)	
Sn(4)	0.33370(13)	-0.04924(51)	0.23475 (7)	
S	0.31139(45)	-0.1153(19)	0.29992(38)	
C(10)	0.2116(25)	-0.3548(71)	0.3428(17)	0.092(20)
C(11)	0.1565(19)	-0.3693(55)	0.3507(14)	0.063(15)
C(12)	0.2528(21)	-0.3592(57)	0.3724(15)	0.077(16)
C(13)	0.2389(48)	-0.4474(48)	0.3053(12)	0.051(13)
C(15)	0.2035(18)	0.0186(48)	0.3646(13)	0.065(15)
C(16)	0.2125(22)	0.1807(66)	0.3456(17)	0.111(22)
C(17)	0.2601(22)	0.0233(58)	0.3937(15)	0.116(22)
C(18)	0.1626(24)	-0.0275(69)	0.3888(17)	0.127(23)
C(20)	0.0860(21)	-0.2042(70)	0.2369(15)	0.110(22)
C(21)	0.1041(15)	-0.3595(57)	0.2451(12)	0.068(14)
C(22)	0.0519(17)	-0.1771(55)	0.2068(14)	0.077(16)
C(23)	0.0586(17)	-0.1819(56)	0.2846(14)	0.085(18)
C(25)	0.1317(27)	0.1422(85)	0.2454(20)	0.098(23)
C(26)	0.1080(24)	0.1987(69)	0.2454(19)	0.086(20)
C(27)	0.0957(26)	0.1753(73)	0.2831(19)	0.098(23)
C(28)	0.1804(30)	0.2376(80)	0.2637(22)	0.115(27)
C(30)	0.2377(19)	-0.3081(52)	0.1662(15)	0.062(15)
C(31)	0.1873(25)	-0.3478(70)	0.1435(17)	0.099(22)
C(32)	0.2785(20)	-0.3478(59)	0.1338(14)	0.068(16)
C(33)	0.2451(16)	- 0.4092(46)	0.2035(11)	0.045(11)
C(35)	0.2469(21)	0.0386(51)	0.1337(13)	0.058(14)
C(36)	0.2379(22)	0.1976(59)	0.1467(16)	0.078(18)
C(37)	0.2229(19)	-0.0069(50)	0.1013(13)	0.052(14)
C(38)	0.2991(34)	0.0406(95)	0.1159(24)	0.148(32)
C(40)	0.4061(18)	- 0.1972(59)	0.2299(14)	0.081(16)
C(41)	0.4423(19)	-0.1636(60)	0.2577(16)	0.095(19)
C(42)	0.3842(16)	-0.3455(58)	0.2275(12)	0.069(15)
C(43)	0.4235(18)	-0.1589(56)	0.1839(14)	0.092(18)
C(45)	0.3623(20)	0.1625(62)	0.2457(15)	0.061(16)
C(46)	0.3997(23)	0.1625(66)	0.2801(17)	0.079(19)
C(47)	0.3848(36)	0.2324(99)	0.1997(27)	0.153(35)
C(48)	0.3149(19)	0.2584(50)	0.2538(14)	0.048(14)

ATOMKOORDINATEN UND TEMPERATURFAKTOREN MIT STANDARDABWEICHUNGEN t-Bu $_8$ Sn $_4$ S, MOLEKÜL B

metrisch zur zweizähligen Molekülachse; dies ist kennzeichnend für eine twist-Form. Bei der Form B ist der dem abgeknickten Atom Sn(3) gegenüberliegende Torsionswinkel praktisch null, typisch für eine envelope-Form.

Eine weitere Bestätigung für diese Zuordnung lieferte die Konformationsanalyse nach Cremer und Pople [17]. Die dabei für die Konformation A gefundenen Phasenwinkel ($Y = S: 277.7^{\circ}; Y = Se: 274.1^{\circ}; Y = Te: 273.2^{\circ}$) liegen dicht bei dem

TABELLE 4

U z х у 0.040 0.5424 0.0 -0.08890.035 0.6001 0.0463 0.0015 0.5798 -0.01030.038 0.0834 0.036 -0.0817Sn(4) 0.0294 0.6327 Se -0.0667 0.5811 -0.0709 0.068 Molekül B 0.037 -0.12460.3151 Sn(1) 0.2158 0.2451 0.038 Sn(2) 0.1591 -0.0670Sn(3) 0.2397 -0.0910 0.1867 0.034 0.2316 0.035 Sn(4) 0.3328 -0.0406 -0.0995 0.3013 0.067 Se 0.3133

ATOMKOORDINATEN UND TEMPERATURFAKTOREN DER SCHWERATOME VON

Fig. 1. Molekül des t-Bu₈Sn₄Te (Stereobild).

Wert für eine ideale twist-Form (270°), die Winkel für B (Y = S: 109.1°; Y = Se: 102.2°) in der Nähe des für eine ideale envelope-Form typischen Wertes von 108°.

Bei beiden Konformationen sind, wie in Fig. 2 deutlich sichtbar, die Abweichun-

Fig. 2. Twist- und envelope-Form von t-Bu₈Sn₄S (Blick in Richtung der Ausgleichsebenen).

TABELLE 5

ATOMKOORDINATEN UND TEMPERATURFAKTOREN MIT STANDARDABWEICHUNGEN t-Bu $_8\mathrm{Sn}_4\mathrm{Te}$

Atom	•			
Sn(1)	0.16111(8)	0.30336(4)	0.11120(3)	s. Tab. 6
Sn(2)	0.13543(8)	0.15813(4)	0.13268(3)	
Sn(3)	0.26838(8)	0.14438(4)	0.25749(3)	
Sn(4)	0.23904(9)	0.28071(4)	0.29880(3)	
Te	0.20385(10)	0.37577(4)	0.21204(3)	
C(10)	0.3619(12)	0.3386(5)	0.0926(5)	0.034(3)
C(11)	0.5083(15)	0.3102(6)	0.1409(6)	0.056(4)
C(12)	0.3532(15)	0.3098(7)	0.0331(6)	0.055(4)
C(13)	0.3678(14)	0.4189(6)	0.0928(6)	0.053(4)
C(15)	-0.0450(13)	0.3572(6)	0.0481(5)	0.042(3)
C(16)	-0.0837(18)	0.3265(8)	- 0.0124(7)	0.082(5)
C(17)	-0.1844(16)	0.3423(7)	0.0679(6)	0.065(4)
C(18)	-0.0134(17)	0.4347(8)	0.0505(7)	0.076(5)
C(20)	0.2274(12)	0.0972(5)	0.0748(5)	0.032(3)
C(21)	0.3963(14)	0.1093(6)	0.0855(6)	0.046(3)
C(22)	0.1993(15)	0.0190(7)	0.0785(6)	0.058(4)
C(23)	0.1442(16)	0.1197(7)	0.0109(7)	0.067(4)
C(25)	-0.1029(12)	0.1284(5)	0.1102(5)	0.031(3)
C(26)	-0.1155(14)	0.0521(6)	0.1229(6)	0.051(3)
C(27)	-0.1663(14)	0.1728(6)	0.1483(5)	0.067(4)
C(28)	-0.1997(14)	0.1414(6)	0.0455(6)	0.053(4)
C(30)	0.5032(12)	0.1147(5)	0.2734(5)	0.032(3)
C(31)	0.5738(15)	0.1677(6)	0.2435(6)	0.054(4)
C(32)	0.6023(14)	0.1079(6)	0.3401(6)	0.053(4)
C(33)	0.5059(15)	0.0430(7)	0.2457(6)	0.064(4)
C(35)	0.1742(12)	0.0685(5)	0.3063(5)	0.028(3)
C(36)	0.2140(15)	0.0060(7)	0.2960(6)	0.057(4)
C(37)	0.2527(15)	0.0840(7)	0.3719(6)	0.061(4)
C(38)	0.0054(14)	0.0761(6)	0.2908(6)	0.050(4)
C(40)	0.4424(13)	0.3211(6)	0.3695(5)	0.036(3)
C(41)	0.5817(16)	0.3185(7)	0.3492(6)	0.064(4)
C(42)	0.4225(16)	0.3989(8)	0.3841(7)	0.072(4)
C(43)	0.4773(19)	0.2747(8)	0.4238(7)	0.081(5)
C(45)	0.0336(13)	0.3038(6)	0.3204(5)	0.036(3)
C(46)	0.0326(13)	0.3799(6)	0.3360(5)	0.041(3)
C(47)	-0.1082(14)	0.2880(6)	0.2669(5)	0.046(3)
C(48)	0.0314(15)	0.2588(6)	0.3720(6)	0.051(4)

gen von einer planaren Anordnung der Ringatome nicht sehr gross; die Wellung der Ringe ist wesentlich geringer als in den analogen Germaniumverbindungen Ph_8Ge_4S [18] und Ph_8Ge_4Se [19]. Wahrscheinlich erzwingt der grosse Platzbedarf der t-Butylgruppen eine annähernd isokline Stellung dieser Reste und damit ein flaches Ringgerüst.

TABELLE (5
-----------	---

ANISO	FROPE TE	MPERATUR	FAKTOREN	DER RINGA	ГОМЕ	
Atom	U ₁₁	U ₂₂	U ₃₃	<i>U</i> ₁₂	<i>U</i> ₁₃	l

Atom	U_{11}	U ₂₂	U ₃₃	U ₁₂	U ₁₃	U ₂₃
t - Bu ₈ S	n₄S, Molekül	A			•	
Sn(1)	0.035(2)	0.060(3)	0.049(2)	-0.005(2)	0.001(1)	0.001(3)
Sn(2)	0.044(2)	0.047(3)	0.041(2)	-0.002(2)	-0.001(1)	0.000(2)
Sn(3)	0.035(2)	0.051(3)	0.051(2)	-0.004(2)	-0.002(1)	0.004(3)
Sn(4)	0.041(2)	0.066(3)	0.039(2)	-0.007(2)	0.006(1)	-0.006(2)
S	0.049(9)	0.190(17)	0.044(9)	-0.046(11)	-0.070(29)	0.004(3)
t-Bu ₈ S	n₄S, Molekül	B				
Sn(1)	0.044(2)	0.057(3)	0.039(2)	0.003(2)	-0.002(1)	0.004(2)
Sn(2)	0.032(2)	0.058(3)	0.041(2)	0.005(2)	-0.001(1)	-0.005(3)
Sn(3)	0.044(2)	0.058(3)	0.033(2)	- 0.004(2)	-0.001(1)	-0.002(2)
Sn(4)	0.035(2)	0.066(3)	0.042(2)	-0.005(2)	-0.001(1)	-0.005(3)
s	0.038(8)	0.149(17)	0.049(9)	-0.010(10)	0.051(26)	-0.009(3)
t-Bu _s S	n₄Te					
Sn(1)	0.035(1)	0.027(1)	0.027(1)	-0.002(0)	0.014(0)	-0.000(0)
Sn(2)	0.027(1)	0.026(1)	0.027(1)	- 0.002(0)	0.007(0)	-0.003(0)
Sn(3)	0.027(1)	0.025(1)	0.028(1)	0.001(0)	0.005(0)	0.001(0)
Sn(4)	0.034(1)	0.027(1)	0.025(1)	0.003(0)	0.011(0)	-0.003(0)
Te	0.092(1)	0.024(1)	0.036(1)	-0.003(0)	0.034(1)	-0.001(0)
		()				

TABELLE 7

ABWEICHUNGEN (pm) DER RINGATOME VON DEN AUSGLEICHSEBENEN (A: twist-Form; B: envelope-Form; SP: Schwerpunkt der Bindung Sn(2)-Sn(3))

	t-Bu ₈ Sn ₄ S	t-Bu ₈ Sn ₄ Se	t-Bu ₈ Sn ₄ Te	
A: Sn1	3	2	1	
Sn4	3	2	1	
Y	-4	-2	-2	
SP	-2	-1	- 1	
Sn2	37	38	37	
Sn3	-41	- 40	- 39	•
B: Snl	2	-2		
Sn2	-1	1		
Sn4	1	- 1		
Y	-2	2		
Sn3	- 79	- 75		

Bindungsabstände und -winkel (Tabelle 8)

Die Zinn-Zinn-Bindungen sind innerhalb eines Moleküls gleich lang. Auch beim Vergleich von Sulfid, Selenid und Tellurid ist kein Unterschied in diesen Bindungslängen zu beobachten: Das Chalkogenatom scheint keinen Einfluss auf den Zinn-Zinn-Abstand auszuüben. Dies wird dadurch bestätigt, dass der Vierring $(t-Bu_2Sn)_4$ ebenfalls die gleiche Bindungslänge aufweist [20]. Diese Zinn-Zinn-Bindungsabstände sind mit jeweils 288 pm merklich länger als die in bisher un-

Fig. 3. Ringtorsionswinkel der beiden Konformationen A und B.

tersuchten Diorganozinn-verbindungen mit vierfach koordiniertem Zinn: $(Ph_2Sn)_6$, 278 pm [4]; $Me_6Sn_3Se_2$, 278 pm [6]; $(Tmsm_2Sn)_4$, 284 pm [5].

In Fig. 4 ist der Zinn-Chalkogen-Ring mit seinen Atomschwerpunkten in das

TABELLE 8

BINDUNGSABSTÄNDE (pm) UND -WINKEL (°) IN t-BugSn₄Y (mit Standardabweichungen)

	$\mathbf{Y} = \mathbf{S}$		Y = Se		Y = Te
	A	В	Ā	B	
Sn(1)-Sn(2)	288.4(5)	286.4(6)	287	287	287.9(1)
Sn(2)-Sn(3)	288.4(6)	288.6(6)	287	289	288.9(1)
Sn(3)-Sn(4)	289.8(7)	286.8(5)	287	288	286.9(1)
Sn(4)-Y	242.8(12)	240.7(13)	254	252	274.3(1)
Sn(1)-Y	241.0(13)	242.1(12)	253	255	274.8(1)
Y-Sn(1)-Sn(2)	108.9(3)	108.4(3)	109.1	108.8	109.00(3)
Sn(1) - Sn(2) - Sn(3)	100.2(2)	100.8(1)	101.5	102.0	104.51(3)
Sn(2) - Sn(3) - Sn(4)	101.4(1)	100.5(2)	102.6	101.8	103.34(3)
Sn(3)-Sn(4)-Y	106.7(4)	107.1(3)	107.9	108.1	109.85(4)
Sn(4)-Y-Sn(1)	116.8(5)	116.2(5)	112.8	112.7	107.42(4)
Sn(1)-C(10)	222(4)	238(7)			221(1)
Sn(1) - C(15)	220(5)	225(5)			227(1)
Sn(2) - C(20)	221(5)	233(6)			224(1)
Sn(2)-C(25)	209(6)	214(8)			220(1)
Sn(3) - C(30)	221(4)	216(5)			219(1)
Sn(3)-C(35)	208(5)	228(5)			227(1)
Sn(4) - C(40)	214(5)	233(5)			223(1)
Sn(4)-C(45)	224(5)	218(6)			223(1)
C(10) - Sn(1) - C(15)	106.0(16)	103.7(19)			108.2(4)
C(20)-Sn(2)-C(25)	108.2(22)	103.6(24)			107.2(4)
C(30)-Sn(3)-C(35)	105.1(16)	103.9(18)			107.4(4)
C(40) - Sn(4) - C(45)	107.4(18)	107.9(19)			109.3(5)
C-C (gemittelt)	156(13)	157(13)			154(2)

Fig. 4. Raumerfüllungsmodell des t-Bu₈Sn₄Te.

Raumerfüllungsmodell des Moleküls (einschliesslich der Wasserstoffatome) eingezeichnet. Man sieht deutlich, dass sich die t-Butylgruppen fast überall berühren; ein kürzerer Zinn-Zinn-Abstand als der beobachtete würde dazu führen, das sich die Organylreste gegenseitig durchdringen müssten, was offenbar eine zu starke Behinderung bedeuten würde.

Die Zinn-Chalkogen-Bindungslängen zeigen keine Besonderheiten, sie entsprechen den Summen der Radien für kovalente Bindungen. Auffallend sind die grossen Winkel an den Chalkogenatomen: Wegen der langen Zinn-Zinn-Bindungen sind die Atome Sn(1) und Sn(4) so weit voneinander entfernt, dass die grossen Winkel an den Chalkogenatomen gefordert werden.

Experimentelles

(a) Die Darstellung von $(t-Bu_2Sn)_4$ und $t-Bu_8Sn_4I_2$ erfolgte nach der Methode von Farrar und Skinner [1].

(b) Octa-t-butyl-tetrastanna-Chalkogen-Verbindungen. In eine Lösung von 5 g t-Bu₈Sn₄I₂ in 100 ml Toluol und 1 ml Et₃N wird ca. eine Stunde H₂S eingeleitet. Ausgefallenes Et₃N HI wird abfiltriert, vom Filtrat wird das Lösungsmittel abgezogen. Der Rückstand wird aus Chloroform/Aceton umkristallisiert (Ausbeute 55%). Bei der Darstellung der Selen- und Tellur-Verbindung werden alle Arbeiten in sauerstofffreien Lösungsmitteln unter Argon durchgeführt. H₂Se und H₂Te werden durch Hydrolyse von Al₂Se₃ bzw. Al₂Te₃ mit verdünnter Salzsäure entwickelt. Al₂Te₃ wird durch direkte Umsetzung der Elemente dargestellt.

t-Bu₈Sn₄S: Fp. 458 K Zersetzung. Gef.: C, 39.67; H, 7.38; Sn, 49.40; S, 3.38. $C_{32}H_{72}Sn_4S$ ber.: C, 39.89; H, 7.48; Sn, 49.31; S, 3.32%.

t-Bu₈Sn₄Se: Fp. 463 K Zersetzung. Gef.: C, 37.76; H, 6.50; Sn, 47.32; Se, 7.62. $C_{32}H_{72}Sn_4Se$ ber.: C, 38.03; H, 7.13; Sn, 47.02; Se, 7.82%.

t-Bu₈Sn₄Te: Fp. 448 K Z. Gef.: C, 36.30; H, 6.90; Sn, 44.90. Te, 12.10. $C_{32}H_{72}Sn_4$ Te ber.: C, 36.28; H, 6.80; Sn, 44.86; Te, 12.06%.

In den Massenspektren treten als schwerste Fragmente jeweils die um eine t-Butylgruppe verminderten Molekülionen auf. Bei allen Bruchstücken stimmen die beobachteten und berechneten Isotopenverteilungen überein.

Dank

Wir danken dem Fonds der Chemischen Industrie und der Deutschen Forschungsgemeinschaft für die Unterstützung dieser Arbeit.

Literatur

- 1 W.V. Farrar und H.A. Skinner, J. Organometal. Chem., 1 (1964) 434.
- 2 H. Puff, R. Gattermayer, R. Hundt und R. Zimmer, Angew. Chem., 89 (1977) 556; Angew. Chem. Int. Ed. Engl., 16 (1977) 547.
- 3 B. Mathiasch, J. Organometal. Chem., 194 (1980) 37.
- 4 D.H. Olson und R.E. Rundle, Inorg. Chem., 2 (1963) 1310.
- 5 V.K. Belsky, N.N. Zemlyansky, N.D. Kolosova und I.V. Borisova, J. Organometal. Chem., 215 (1981) 41.
- 6 M. Dräger und B. Mathiasch, Z. Anorg. Allg. Chem., 470 (1980) 45.
- 7 W. Schuh, Staatsexamensarbeit, Bonn 1977.
- 8 B. Gödert, Dissertation, Bonn 1979.
- 9 R. Hundt, Dissertation, Bonn 1973; B. Menzebach und P. Bleckmann, J. Organometal. Chem., 91 (1975) 291; H.J. Jacobsen und B. Krebs, ibid., 136 (1977) 333; M. Dräger, A. Blecher, H.J. Jacobsen und B. Krebs, ibid., 161 (1978) 319; A. Blecher und M. Dräger, Angew. Chem., 91 (1979) 740; Angew. Chem. Int. Ed. Engl., 18 (1979) 677.
- 10 H. Puff, A. Bongartz, R. Sievers und R. Zimmer, Angew. Chem., 90 (1978) 995; Angew. Chem. Int. Ed. Engl., 17 (1978) 939.
- 11 A. Bongartz, Dissertation, Bonn 1979.
- 12 W. Schuh, Dissertation, Bonn 1982.
- 13 J.M. Stewart, XRAY67 und XRAY76, Technical Report (TR-446) of the Computer Science Center, University of Maryland.
- 14 C.K. Johnson, ORTEP, Oak Ridge 1965, bearbeitet von R. Hundt, Bonn 1969.
- 15 E. Keller, SCHAKAL, Freiburg.
- 16 R. Hundt, KPLOT, Bonn.
- 17 D. Cremer und J.A. Pople, J. Amer. Chem. Soc., 97 (1975) 1354.
- 18 L. Ross und M. Dräger, J. Organometal. Chem., 199 (1980) 195.
- 19 L. Ross und M. Dräger, Z. Anorg. Allg. Chem., 472 (1981) 109.
- 20 H. Puff, H. Reuter, W. Schuh und R. Zimmer, in Vorbereitung.